
What Microservices can learn from Trading
Systems and visa versa.

Peter Lawrey - CEO of Higher Frequency Trading
Docklands LJC - 2016

Latency Sensitive Microservices in Java

Peter Lawrey

Java Developer / Consultant for
investment banks and hedge funds

 for 9 years.

Most answers for Java and JVM on
stackoverflow.com

Chronicle Software

Build a skeleton high performance system
 in Java in a one week workshop.

128 KB RAM

Where do Microservices come from?

UNIX Principle.

Staged Event Driven Architecture.

Service Orientated Architecture.

Lambda Architecture.

Reactive Streams.

Where do Microservices come from?

Used in building Web applications.

 “Micro-Web-Services”

24 fps, ~1 per 40 ms

The web is DOOM

https://mobiforge.com/research-analysis/the-web-is-doom

Microservices denial?

Microservices bring together best practices
 from a variety of areas.

Most likely you are already using
some of these best practices.

Microservices denial?

It sounds like marketing hype.

Microservices denial?

It sounds like marketing hype.

It all sounds pretty familiar.

Microservices denial?

It sounds like marketing hype.

It all sounds pretty familiar.

It just a rebranding of stuff we already do.

Microservices denial?

It sounds like marketing hype.

It all sounds pretty familiar.

It just a rebranding of stuff we already do.

There is room for improvement in what we do.

Microservices denial?

It sounds like marketing hype.

It all sounds pretty familiar.

It just a rebranding of stuff we already do.

There is room for improvement in what we do.

There are some tools, and ideas we could apply to
our systems without changing too much.

Microservices score card

Today Quick Wins 6 Months

Simple component based design. ★★ ★★☆ ★★☆

Distributed by JVM and Machine ★★ ★★ ★★☆

Service Discovery ★ ★☆ ★★

Resilience to failure ★☆ ★☆ ★★

Transport agnostic ★ ★☆ ★★

Asynchronous messaging. ★☆ ★★ ★★

Automated, dynamic deployment of
services.

★☆ ★★ ★★☆

Service private data sets. ☆ ★☆ ★★

Transparent messaging. ☆ ★★ ★★☆

Independent Teams ★☆ ★★ ★★

Lambda Architecture ★ ★★ ★★★

Using Microservices in Trading Systems

• Standard techniques for developing and
deploying distributed systems

• Shorter time to market.

• Easier to maintain.

• Simpler programming models.

What Microservices can learn
 from Trading Systems

• Trading system have been working with
performant distributed systems for years.

• Asynchronous messaging, how to test
correctness and performance for latencies you
cannot see.

• Building deterministic, highly reproducible
systems.

What is low latency?

You have a view on how much the response time
 of a system costs your business.

or

You care about latencies you can only measure
 as even the worst latencies are too fast to see.

Example of low latency?

An Investment Bank measured the 99.999%ile (worst 1 in
100,000) latency of our Chronicle FIX engine at 450
micro-seconds.

This was unacceptable to them.

We fixed this bug and dropped it to below 35 micro-
seconds.

Where do they overlap.

• Microservices and Trading Systems have high level
principles of

• Simple component based design.

• Asynchronous messaging.

• Automated, dynamic deployment of services.

• Service private data sets.

• Transparent messaging.

• Teams can develop independently based on well
defined contracts.

Each output is the result of one input message.
This is useful for gateways, both in and out of your

system. Highly concurrent.

Each output is the result of ALL the inputs. Instead of
replying ALL input message each time, the Function

could save an accumulated state.

Your critical path as a series of low latency,
non blocking tasks. This keeps your latencies

end to end consistently low.

To go faster use private data

Micro-services do something simple
with privately held data.

 Cache Size Clock
Cycles

Private

L1 Instruction 32 KB 3 Yes

L1 Data 32 KB 3 Yes

L2 Cache 256 KB 10 Yes

L3 Cache 1 MB –
48 MB

40 - 70 NO

A Computer is a Distributed System.

When you are considering short time scales of 10 micro-
seconds or less, you have to consider that each core as a
processor of it’s own.

Each core

• has it’s own memory (L1 & L2 caches)

• can run independently

• communicates with other cores via a L2 cache
coherence bus.

Testing and Debugging Microservices

Frameworks can make testing and debugging harder.

You need to be able to test and debug your components
without the framework, or a transport.

Turning a Monolith into Microservices

Business Component + Transport = Service.

Starting with a simple contract

An asynchronous message has a type, a payload
and doesn’t return a result.

public interface SidedMarketDataListener {
 void onSidedPrice(SidedPrice sidedPrice);

}

public interface MarketDataListener {
 void onTopOfBookPrice(TopOfBookPrice price);

}

A Data Transfer Object
public class SidedPrice extends AbstractMarshallable {
 String symbol;
 long timestamp;
 Side side;
 double price, quantity;

 public SidedPrice(String symbol, long timestamp, Side side,
 double price, double quantity) {
 this.symbol = symbol;
 this.timestamp = timestamp;
 this.side = side;
 this.price = price;
 this.quantity = quantity;
 return this;
 }
}

Deserializable toString()

For it to deserialize the same object, no information can be lost,
which useful to creating test objects from production logs.

 SidedPrice sp = new SidedPrice("Symbol", 123456789000L,
 Side.Buy, 1.2345, 1_000_000);
assertEquals("!SidedPrice {\n" +
 " symbol: Symbol,\n" +
 " timestamp: 123456789000,\n" +
 " side: Buy,\n" +
 " price: 1.2345,\n" +
 " quantity: 1000000.0\n" +
 "}\n", sp.toString());

// from string
SidedPrice sp2 = Marshallable.fromString(sp.toString());
assertEquals(sp2, sp);

assertEquals(sp2.hashCode(), sp.hashCode());

Writing a simple component

We have a component which implements our contract
and in turn calls another interface with a result

public class SidedMarketDataCombiner
 implements SidedMarketDataListener {

 final MarketDataListener mdListener;

 public SidedMarketDataCombiner(MarketDataListener mdListener) {
 this.mdListener = mdListener;
 }

Writing a simple component

The component calculates a result, using private state.

 final Map<String, TopOfBookPrice> priceMap = new TreeMap<>();

 public void onSidedPrice(SidedPrice sidedPrice) {
 TopOfBookPrice price = priceMap.computeIfAbsent(
 sidedPrice.symbol, TopOfBookPrice::new);
 if (price.combine(sidedPrice))
 mdListener.onTopOfBookPrice(price);
 }

Testing our simple component

We can mock the output listener of our component.

MarketDataListener listener = createMock(MarketDataListener.class);
listener.onTopOfBookPrice(new TopOfBookPrice("EURUSD", 123456789000L,
 1.1167, 1_000_000, Double.NaN, 0));
listener.onTopOfBookPrice(new TopOfBookPrice("EURUSD", 123456789100L,
 1.1167, 1_000_000, 1.1172, 2_000_000));
replay(listener);

SidedMarketDataListener combiner = new SidedMarketDataCombiner(listener);
combiner.onSidedPrice(new SidedPrice("EURUSD", 123456789000L,
 Side.Buy, 1.1167, 1e6));
combiner.onSidedPrice(new SidedPrice("EURUSD", 123456789100L,
 Side.Sell, 1.1172, 2e6));

verify(listener);

Testing multiple components

We can mock the output listener of our component.

// what we expect to happen
OrderListener listener = createMock(OrderListener.class);

listener.onOrder(new Order("EURUSD", Side.Buy, 1.1167, 1_000_000));

replay(listener);

// build our scenario
OrderManager orderManager =
 new OrderManager(listener);

SidedMarketDataCombiner combiner =
 new SidedMarketDataCombiner(orderManager);

Testing multiple components

// events in: not expected to trigger
orderManager.onOrderIdea(
 new OrderIdea("EURUSD", Side.Buy, 1.1180, 2e6));

combiner.onSidedPrice(
 new SidedPrice("EURUSD", 123456789000L, Side.Sell, 1.1172, 2e6));
combiner.onSidedPrice(
 new SidedPrice("EURUSD", 123456789100L, Side.Buy, 1.1160, 2e6));
combiner.onSidedPrice(
 new SidedPrice("EURUSD", 123456789100L, Side.Buy, 1.1167, 2e6));

 // expected to trigger
orderManager.onOrderIdea(
 new OrderIdea("EURUSD", Side.Buy, 1.1165, 1e6));

verify(listener);

Adding a transport

Any messaging system can be used as a transport. You
can use

• REST or HTTP

• JMS, Akka, MPI

• Aeron or a UDP based transport.

• Raw TCP or UDP.

• Chronicle Queue.

Making messages transparent

--- !!data #binary
onOrderIdea: {
 symbol: EURUSD,
 side: Buy,
 limitPrice: 1.118,
 quantity: 2000000.0
}

orderManager.onOrderIdea(
 new OrderIdea("EURUSD", Side.Buy, 1.1180, 2e6));

Why use Chronicle Queue

Chronicle Queue v4 has a number of advantages

• Broker less, only the OS needs to be up.

• Low latency, less than 10 microseconds 99% of the
time.

• Persisted, giving your replay and transparency.

• Can replace your logging improving performance.

• Kernel Bypass, Shared across JVMs with a system call
for each message.

--- !!meta-data #binary
header: !SCQStore { wireType: !WireType BINARY, writePosition: 777, roll: !SCQSRoll {
length: 86400000, format: yyyyMMdd, epoch: 0 }, indexing: !SCQSIndexing {
indexCount: !int 8192, indexSpacing: 64, index2Index: 0, lastIndex: 0 } }

position: 227
--- !!data #binary
onOrderIdea: { symbol: EURUSD, side: Buy, limitPrice: 1.118, quantity: 2000000.0 }

position: 306
--- !!data #binary
onTopOfBookPrice: { symbol: EURUSD, timestamp: 123456789000, buyPrice: NaN,
buyQuantity: 0, sellPrice: 1.1172, sellQuantity: 2000000.0 }

position: 434
--- !!data #binary
onTopOfBookPrice: { symbol: EURUSD, timestamp: 123456789100, buyPrice: 1.116,
buyQuantity: 2000000.0, sellPrice: 1.1172, sellQuantity: 2000000.0 }

position: 566
--- !!data #binary
onTopOfBookPrice: { symbol: EURUSD, timestamp: 123456789100, buyPrice: 1.1167,
buyQuantity: 2000000.0, sellPrice: 1.1172, sellQuantity: 2000000.0 }

position: 698
--- !!data #binary
onOrderIdea: { symbol: EURUSD, side: Buy, limitPrice: 1.1165, quantity: 1000000.0 }
...
83885299 bytes remaining

Measuring the performance?

Measure the write latency with JMH (Java Microbenchmark
Harness)

 Percentiles, us/op:

 p(0.0000) = 2.552 us/op

 p(50.0000) = 2.796 us/op

 p(90.0000) = 5.600 us/op

 p(95.0000) = 5.720 us/op

 p(99.0000) = 8.496 us/op

 p(99.9000) = 15.232 us/op

 p(99.9900) = 19.977 us/op

 p(99.9990) = 422.475 us/op

 p(99.9999) = 438.784 us/op

 p(100.0000) = 438.784 us/op

No Flow Control?

Market Data

Compliance

In summary

Microservices doesn’t mean you have to do everything differently,
only improve what you are doing already.

In summary

Microservices doesn’t mean you have to do everything differently,
only improve what you are doing already.

Introduce the Best Practices which make sense for you.

In summary

Microservices doesn’t mean you have to do everything differently,
only improve what you are doing already.

Introduce the Best Practices which make sense for you.

You will have some Best Practices already.

In summary

Microservices doesn’t mean you have to do everything differently,
only improve what you are doing already.

Introduce the Best Practices which make sense for you.

You will have some Best Practices already.

Trading Systems are distributed systems, even on one machine.

In summary

Microservices doesn’t mean you have to do everything differently,
only improve what you are doing already.

Introduce the Best Practices which make sense for you.

You will have some Best Practices already.

Trading Systems are distributed systems, even if on one machine.

Lambda Architecture is simple, so use it as much as possible.

Where can I try this out?

Low Latency Microservices examples

https://github.com/Vanilla-Java/Microservices

The OSS Chronicle products are available

https://github.com/OpenHFT/

https://github.com/Vanilla-Java/Microservices
https://github.com/Vanilla-Java/Microservices
https://github.com/Vanilla-Java/Microservices
https://github.com/OpenHFT/

Q & A

Blog: http://vanilla-java.github.io/

http://chronicle.software

@ChronicleUG

sales@chronicle.software

https://groups.google.com/forum/#!forum/java-chronicle

http://vanilla-java.github.io/
http://vanilla-java.github.io/
http://vanilla-java.github.io/
http://chronicle.software/
mailto:peter.lawrey@chronicle.software
https://groups.google.com/forum/
https://groups.google.com/forum/
https://groups.google.com/forum/

